成人午夜免费视频,一本一道久久a久久无码,6080无码,人妖一区二区三区

您好,歡迎光臨濟南泉誼機械科技有限公司網(wǎng)站!

服務(wù)熱線

李經(jīng)理13695310799
熱門搜索:軍事模型 航天模型 飛機模型 坦克模型 變形金剛模型 鋼雕模型
您當(dāng)前所在位置 首頁>>新聞動態(tài)>>公司動態(tài)扒一扒航空航天模型的相關(guān)內(nèi)容要點

扒一扒航空航天模型的相關(guān)內(nèi)容要點

發(fā)布時間:2022-12-20 來源:http:///

下面大型航天模型廠家來給大家講解下航天模型的知識,大家可以作為參考信息了解一下。
Next, large-scale aerospace model manufacturers will explain the knowledge of aerospace models to you, and you can learn about them as reference information.
一、機翼升力原理
1、 Wing lift principle
飛機機翼地翼剖面又叫做翼型,一般翼型的前端圓鈍、后端尖銳,上表面拱起、下表面較平,呈魚側(cè)形。前端點叫做前緣,后端點叫做后緣,兩點之間的連線叫做翼弦。當(dāng)氣流迎面流過機翼時,原來是一股氣流,由于機翼地插入,被分成上下兩股。
The ground wing section of an aircraft wing is also called an airfoil. Generally, the front end of an airfoil is blunt, the rear end is sharp, the upper surface is arched, and the lower surface is flat, showing a fish side shape. The front point is called the leading edge, the rear point is called the trailing edge, and the line between the two points is called the chord. When the air flows head-on through the wing, it is a stream of air. Because the wing is inserted, it is divided into upper and lower streams.
通過機翼后,在后緣又重合成一股。由于機翼上表面拱起,是上方的那股氣流的通道變窄。根據(jù)氣流的連續(xù)性原理和伯努利定理可以得知,機翼上方的壓強比機翼下方的壓強小,也就是說,機翼下表面受到向上的壓力比機翼上表面受到向下的壓力要大,這個壓力差就是機翼產(chǎn)生的升力。
After passing through the wing, a new strand is formed at the trailing edge. As the upper surface of the wing arches, the passage of the upper air stream narrows. According to the continuity principle of air flow and Bernoulli's theorem, the pressure above the wing is less than that below the wing, that is, the upward pressure on the lower surface of the wing is greater than the downward pressure on the upper surface of the wing. This pressure difference is the lift generated by the wing.
二、飛機機的翼阻力
2、 Wing resistance of aircraft
只要物體同空氣有相對運動,必然有空氣阻力作用在物體上。作用在模型飛機上的阻力主要有摩擦阻力、壓差阻力和誘導(dǎo)阻力。
As long as the object has relative motion with air, there must be air resistance acting on the object. The drag acting on the model aircraft mainly includes frictional drag, differential pressure drag and induced drag.
摩擦阻力:當(dāng)空氣流過機翼表面的時候,由于空氣的粘性作用,在空氣和機翼表面之間會產(chǎn)生摩擦阻力。如果機翼表面的邊界層是層流邊界層,空氣粘性所引起的摩擦阻力比較小,如果機翼表面的邊界層是紊流邊界層,空氣粘性所引起的摩擦阻力就比較大。
Friction resistance: when air flows over the wing surface, friction resistance will occur between the air and the wing surface due to the viscous effect of air. If the boundary layer on the wing surface is laminar, the friction resistance caused by air viscosity is relatively small; if the boundary layer on the wing surface is turbulent, the friction resistance caused by air viscosity is relatively large.
為了減少摩擦阻力,可以減少模型飛機同空氣的接觸面積,也可以把模型飛機表面做光滑些。但不是越光滑越好,因為表面太光滑,容易保持層流邊界層,而層流邊界層的氣流容易分離,會使壓差阻力大大增加。
In order to reduce the friction resistance, the contact area between the model aircraft and the air can be reduced, and the surface of the model aircraft can also be made smooth. However, the smoother the better, because the surface is too smooth, it is easy to maintain the laminar boundary layer, and the laminar boundary layer is easy to separate the air flow, which will greatly increase the differential pressure resistance.
三、飛機模型翼型
3、 Airfoil of aircraft model
常用的模型飛機翼型有對稱、雙凸、平凸、凹凸,s形等幾種,對稱翼型的中弧線和翼弦重合,上弧線和下弧線對稱。這種翼型阻力系數(shù)比較小,但升阻比也小。一般用在線操縱或遙控特技模型飛機上雙凸翼型的上弧線和下弧線都向外凸,但上弧線的彎度比下弧線大。這種翼型比對稱翼型的升阻比大。一般用在線操縱競速或遙控特技模型飛機上
The commonly used model aircraft airfoils are symmetrical, biconvex, plano convex, concave convex, s-shaped, etc. The middle arc of the symmetrical airfoil coincides with the chord, and the upper arc is symmetrical with the lower arc. The drag coefficient of this airfoil is relatively small, but the lift drag ratio is also small. In general, the upper and lower arcs of a doubly convex airfoil on a model aircraft that is operated online or remotely are convex outward, but the curvature of the upper arc is greater than that of the lower arc. This airfoil has a higher lift drag ratio than symmetric airfoils. It is generally used for online control of racing or remote control stunt model aircraft
大型航天模型
四、飛機模型視圖
4、 Aircraft model view
把一架處于水平狀態(tài)的模型飛機,放在相互垂直的三個平面中間,并使機身的縱軸同其中一個平面垂直,同另外兩個平面平行。如果我們分別從三個方向在足夠遠的地方看模型飛機,并把看到的形狀畫在每個平面上,也就是在三個互相垂直的平面上作出模型飛機的投影,然后把這三個相互垂直的平面展開,就可以得到頂視圖,側(cè)視圖和前視圖。在一般情況下,通過這三個視圖就能比較準(zhǔn)確地表示出一架模型飛機的形狀和主要尺寸。
Place a horizontal model airplane in the middle of three mutually perpendicular planes, and make the longitudinal axis of the fuselage perpendicular to one of the planes and parallel to the other two planes. If we look at the model airplane from three directions at a distance far enough, and draw the shape we see on each plane, that is, make a projection of the model airplane on three mutually perpendicular planes, and then unfold the three mutually perpendicular planes, we can get the top view, side view and front view. In general, the shape and main dimensions of a model aircraft can be accurately represented through these three views.
五、飛機的螺旋槳
5、 The propeller of an airplane
螺旋槳是一種把發(fā)動機的動力變成拉力的裝置。螺旋槳的效率的高低會直接影響到模型飛機的飛行成績。螺旋槳槳葉的工作原理和機翼十分相似。如果把槳葉取下來觀察,就會發(fā)現(xiàn)它是一個扭曲著的機翼。槳葉剖面和機翼剖面差不多。槳葉和機翼的區(qū)別在于,機翼在空氣中的運動基本上是平動的,而槳葉既繞著槳軸旋轉(zhuǎn),又隨著飛機千起前進。
A propeller is a device that turns the power of an engine into a pulling force. The efficiency of propeller will directly affect the flight performance of model aircraft. The working principle of propeller blades is very similar to that of wings. If you take down the blade and observe it, you will find that it is a twisted wing. The blade profile is similar to the wing profile. The difference between blades and wings is that the movement of wings in the air is basically translational, while blades not only rotate around the propeller shaft, but also move forward with the aircraft.
扒一扒航空航天模型的相關(guān)內(nèi)容要點就到這里了,您對此有什么相關(guān)內(nèi)容就來我們網(wǎng)站http://咨詢吧!
So much for the relevant content of the aerospace model. If you have any relevant content, please come to our website http:// Consult!
-